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A MODEL OF MAGMA SOLIDIFICATION

DURING EXPLOSIVE VOLCANIC ERUPTIONS

UDC 536.421.4:550.3A. A. Chernov

The paper considers the problem of magma solidification during an explosive volcanic eruption, which
is characterized by release of a large amount of gases from the magma. This leads to considerable
cooling and, hence, solidification of the magma. It is found that solidified magma has the structure
of porous glass with crystalline inclusions.
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Introduction. It is known that volcanic eruptions are very diverse. Thus, the nature of volcanic eruptions
can vary from a slow lava flow to a disastrous explosive volcanic eruption, depending on the amount of gases dissolved
in magma, which is determined by the depth of the magma chamber. Explosive eruptions are characteristic of high
gas-saturated magmas [with a mass fraction of dissolved gases (predominantly water) exceeding 3%].

Since real volcanic eruptions are very difficult to study, simulations of these phenomena are of great impor-
tance. It is necessary to adequately describe the magma solidification process during volcanic eruptions because
the content of crystalline material in magma has a significant effect on the dynamics of lava flows and, hence, on
the structure of the material produced.

There have been a number of studies of the magma solidification process [1–3]. The main disadvantage
of these studies is that they consider crystallization in a quasi-isothermal approximation; i.e., it is assumed that
supercooling of magma is due only to a change in the effective melting point while the magma temperature remains
constant during the entire process. In addition, the mechanisms resulting in magma cooling are not considered and
the heat release due to an increase in the crystalline mass per unit volume is ignored.

The present study is an attempt to simulate magma solidification taking into account that the process is
nonisothermal.

Formulation of the Problem. The magma flow resulting from an explosive volcanic eruption is character-
ized by a strong pressure drop (from a few hundreds of megapascals to atmospheric pressure) and, as a consequence,
by release of a large amount of gases. This is due to the fact according to Henry’s law, the equilibrium concentration
of gases dissolved in magma (predominantly water) is a function of pressure P . For water, this dependence has the
following form [4]:

Ceq(P ) = KH

√
P .

Here Ceq is the equilibrium mass concentration of water dissolved in the magma and KH is Henry’s constant for
water. As the pressure drops, the magma becomes supersaturated and begins to release gas bubbles, which grow as
a result of gas diffusion from the melt (up to the time the supersaturation completely disappears). In the present
study, magma decompression is considered instantaneous.

As is known, the diffusive growth of a bubble is accompanied by thermal effects. A numerical study of
this phenomenon in magmatic melts is performed in [5]. It is shown that magma cooling during degassing is due
primarily to energy expenditures in gas desorption from the melt into bubbles. In accordance with this, we estimate
the maximum supercooling of magma (relative to the initial temperature) rd∆C/cm upon release of the entire excess
mass of gases [∆C = Ceq(Pi)− Ceq(Pf) is the supersaturation of the magma due to instantaneous decompression,
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Fig. 1. Heat of water desorption versus temperature for P = 0.1 (1); 50 (2), and 100 MPa (3).

Pi and Pf are initial and final pressure, respectively, rd is the specific heat of desorption, determined according
to [6], and cm is the specific heat of the magma]. We note that the heat of desorption depends on the magma
temperature and pressure. The indicated dependence is shown in Fig. 1. Assuming that the initial magma pressure
is 170 MPa (which corresponds to a magma chamber depth of approximately 7 km and a mass content of water
dissolved in magma of 0.055) and that the final pressure is atmospheric, we find that during degassing, the magma
can be cooled by 47 K (ignoring the heat release due to crystallization). When the magma enters the supercooling
region, it begins to crystallize.

It should be noted that magma supercooling results not only from its cooling but also from a change in the
effective melting point of the magma Tmelt during degassing, which is determined according to [3] as follows:

Tmelt = Tliq(1−X) + TsolX,

Tliq = 8.33 · 104 C2 − 139.4 · 102 C + 1611.75,

Tsol = 5.74 · 104 C2 − 98.72 · 102 C + 1281.23.

Here Tliq and Tsol are the liquidus and solidus temperatures, C is the mass concentration of gases dissolved in the
magma, and X is the volume fraction of the crystalline mass.

In addition to magma crystallization, its amorphization is also possible. Vitrification of the melt occurs
because during cooling its temperature becomes lower than the vitrification temperature. The latter is usually de-
termined as the temperature at which the melt viscosity becomes equal to 1012 Pa · sec. The temperature dependence
of the magma viscosity is described by the Arrhenius dependence [7, 8]

η = η0 exp (Eη/(kBT )),

where Eη = E0
η(1−kηC) is the activation energy of the viscous flow, E0

η is the activation energy for the “dry” melt,
kη is an empirical coefficient, η0 is a preexponential factor, and kB is Boltzmann’s constant. Thus, an increase in the
magma viscosity results not only from its cooling but also from degassing (because of an increase in the activation
energy). Figure 2 shows the vitrification temperature of the magma and the liquidus and solidus temperatures
versus the mass concentration of gases dissolved in the magma. The vitrification temperature was calculated for
the following kinetic parameters of the magma: E0

η = 5.06 · 10−19 J/mole, η0 = 10−2.5 Pa · sec, and kη = 11.
Let us estimate the heat effects accompanying the growth of a single bubble formed at the initial time in

the melt under instantaneous nucleation conditions.
Solution of the Thermal Problem in the Case of Growth of a Single Bubble. We shall consider

the problem of magma cooling during diffusive growth of a single bubble. The problem reduces to solving the
boundary-value problem for the heat-conduction equation
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Fig. 2. Liquidus (1) and solidus (2) temperatures and vitrification temperature (3) versus mass
concentration of gases dissolved in magma.
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subject to the initial condition

T = T0 at t = 0 (2)

and the boundary conditions

−λm
∂T

∂r
= −ρmrdD

∂C

∂r
at r = Rb, T → T0 at r →∞. (3)

Here T is the temperature of the melt, T0 is the initial temperature of the melt (below, it is considered equal to
the melting point of the melt Tmelt at the initial time), ρm is the density of the melt, am and λm are the thermal
diffusivity and thermal conductivity of the melt, respectively, D is the gas diffusivity in the melt, and Rb is the
bubble radius. The dependence of the velocity of the melt away from the bubble is obtained from the continuity
equation v(r) = vbR

2
b/r

2, where vb = Ṙb is the bubble growth rate.
The problem (1)–(3) must be supplemented by the time dependence of the bubble radius that follows from

the solution of the problem of bubble growth in a supersaturated solution.
The present problem was studied in [9, 10], in which two stages of growth of a single bubble are distinguished.

At the initial stage of the growth, the bubble pressure is kept equal to its initial value (before the moment of
decompression) and the bubble growth is limited by viscous stresses. The bubble pressure gradually decreases and
eventually becomes equal to ambient pressure. The bubble growth rate at this stage is determined primarily by
diffusion. In this case, we obtain the quasisteady-state solution of the problem

Rb(t) =
√
Defft, Deff = 2Dρm ∆C/ρg, (4)

where ρg is the density of the bubble gas, determined from the ideal gas equation of state. The gas flow into the
bubble is determined from the expression

∂C

∂r

∣∣∣
r=Rb

=
∆C
Rb

. (5)

According to the results of [10], the time of establishment of a quasisteady-state concen-
tration profile depends primarily on the initial gas content, which determines the viscosity of
the magma. Thus, during bubble growth in a highly gas-saturated magma (η < 106 Pa
× sec and ∆P ≈ 108 Pa), a quasisteady-state concentration profile is established at t < 0.01 sec. A different
situation arises for gas release from low gas-saturated magmas (η > 108 Pa · sec and ∆P ≈ 106 Pa), where
transition to the asymptotic bubble-growth law occurs at t > 1000 sec.
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As is noted above, in the present paper, we consider the case of highly gas-saturated magmas, for which the
square root law of bubble growth (4) is valid practically from the initial time. In this case, the problem (1)–(3) has
a self-similar solution.

We introduce the variable γ = r̂/
√
amt (r̂ = r−Rb is a coordinate related to the front of the bubble). Then,

by virtue of (4) and (5), the heat-conduction equation (1) reduces to the ordinary differential equation

θ′′ + f(γ)θ′ = 0, (6)

where f(γ) = (1/2)[γ +
√

Le∗ (1− Le∗/(γ +
√

Le∗)2)] + 2/(γ +
√

Le∗), Le∗ = Deff/am is a modified Lewis number,
and θ = (T − T0)/T0 is the dimensionless temperature. Boundary conditions (3) are written as

θ′ = æ at γ = 0, θ = 0 at γ →∞, (7)

where æ = ρmrdD∆C/(λmT0

√
Le∗).

For Le∗ � 1, characteristic of the problem considered, an approximate solution of Eq. (6) can be obtained
with allowance for boundary conditions (7):

θ(γ) ' −æLe∗
(exp [−(γ +

√
Le∗)2/4]

γ +
√

Le∗
+
√
π

2
erfc

γ +
√

Le∗

2

)
. (8)

From solution (8) it follows that the maximum supercooling of the melt ∆T = T0−T is reached at the front
of the bubble (γ = 0) and remains constant during the entire process:

∆T
∣∣∣
r=Rb

' ρmrdD∆C/λm.

Calculations yield low values of magma supercooling at the front of the bubble: ∆T |r=Rb ≈ 0.15 K at
∆C ≈ 0.055. The calculation was conducted for the following thermal and kinetic parameters of magma: density
ρm = 2300 kg/m3, thermal diffusivity am = 1.47 · 10−7 m2/sec, specific heat cm = 1.35 · 103 J/(kg ·K), diffusivity
D = 2·10−11 m2/sec, Henry’s constant KH = 4.33·10−6 Pa−1/2, and specific heat of crystallization L = 1.4·105 J/kg.
The low values of melt supercooling are due to the fact that the Lewis numbers characteristic of the present problem
are much smaller than unity (Le∗ = 0.1–0.2). This implies that the thermal wave propagates much faster than the
diffusion wave. Thus, the growth of a single bubble does not lead to a significant supercooling of the melt, and
hence, to its crystallization. Therefore, one needs to consider the problem of magma solidification during growth of
an ensemble of gas bubbles. The temperature field over the entire volume of the melt can be considered uniform
and varying with time owing to the presence of internal heat sources in the melt. A solution of the present problem
is given below.

Solution of the Problem of Melt Solidification During Growth of an Ensemble of Gas Bubbles.
We consider the problem of magma solidification during propagation of an ensemble of gas bubbles. The problem
reduces to considering a bounded volume of magma with internal heat sources determined by gas desorption from
the melt into bubbles and crystallization of the melt using the kinetic theory of phase transitions. We write the
heat-conduction equation taking into account that at each time, the temperature field is uniform over the entire
volume of the melt:

ρmcm
dT

dt
= −Qd +Qcr. (9)

Here T is the melt temperature averaged over the volume, Qd = rdJD is the amount of heat expended in gas
desorption per unit volume, JD is the total diffusion gas flow from the melt into bubbles per unit volume, Qcr =
ρmL(dX/dt) is the heat released per unit volume by growing nuclei of the new phase due to crystallization, X =
V (t)/V is the volume fraction of the crystalline mass in the melt, V is the sample volume, V (t) is the volume
occupied by the crystalline phase, and L is the specific heat of crystallization.

Assuming that the bubble nucleation process is instantaneous and the bubble concentration per unit volume
is constant during the entire process, we write the expression for the diffusion gas flow in the bubbles:

JD = Nb
dmb

dt
, (10)

where Nb is the number of bubbles per unit volume formed during nucleation (in the calculations, the number of
bubbles per unit volume is set equal to 1013–1014 m−3, which corresponds to the number of bubbles in volcanic
glass and pumice), and mb is the mass of a bubble determined from the relation
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dmb

dt
= 4πR2

bρmD
∂C

∂r

∣∣∣
r=Rb

.

As in the previous calculations, we use the quasisteady-state solution of the diffusive problem of growth of a single
bubble in a supersaturated solution [see (4) and (5)]. In the case of growth of an ensemble of gas bubbles, this
solution with is valid high accuracy up to the moment the diffusion layers of neighboring bubbles begin to interact.
Bubble growth ceases after the excessive gas that appeared in the melt as a result of decompression is released into
the gas phase. It is easy to obtain the limiting radius Rfb of a single bubble:

Rfb =
( 3

4πNb

ρm

ρg
∆C

)1/3

.

Let us consider the dynamics of melt crystallization upon cooling. It is known that nuclei of the new phase
arise in the volume of the melt as a result of fluctuation, and their formation is possible on both impurity particles
(heterogeneous nucleation) and in the absence of impurities (homogeneous nucleation). According to the estimates
given in [11], the contribution of homogeneous nucleation to mass crystallization for fairly pure melts becomes
predominant only at cooling rates higher than 106 K/sec. The cooling rate of magma during degassing is much
lower than this value, 1–2 K/sec. In addition, the work of formation of a critical nucleus for the characteristic
magma supercooling has a large value (approximately 500kBT ), while intense nucleation is characterized by an
energy barrier of (30–80)kBT . Therefore, in considering the problem of magma solidification, it is necessary to use
the theory of heterogeneous nucleation.

According to this theory, the frequency of heterogeneous nucleation Jhet in an unsteady nonisothermal
process is given by the expression [11]

Jhet(t) = Jhet
s exp

(
− t0
te

)
, Jhet

s =
Ncr∑
i=1

niB exp
(
− W∗ψ(ϕi)

kBT

)
. (11)

Here Jhet
s is the steady-state frequency of heterogeneous nucleation corresponding to a steady-state phase transition

(te � t0); t0 ' n4/3
∗ (h/(kBT )) exp (Eη/(kBT )) is the characteristic time of establishment of steady-state nucleation

(delay time); h is Planck’s constant; n∗ is the number of molecules in a critical nucleus (the radius of a critical
nucleus for homogeneous nucleation is defined by the expression R∗ = 2σlsTmelt/(ρmL∆T ); σls is the surface tension
on the melt–crystal interface; the heterogeneous nucleation model uses the same curvature radius of the surface of a

dome-shaped nucleus as for homogeneous nucleation); the parameter te = t0(T )

t∫
0

t0(T )−1 dt characterizes the age

of the sample in a nonisothermal process (in the case of an isothermal process, te = t, i.e., the characteristic age
of the sample is equal to the time of observation); B = 2 dm(σls/(kBT ))1/2(kBT/h) exp (−Eη/(kBT )) is a kinetic
coefficient; dm is the characteristic molecular diameter, W∗ = 16πσ3

lsT
2
melt/(3ρ

2
m L2∆T 2) is the work of formation

of a critical nucleus in a homogeneous process, ψ(ϕi) = (1/4)(1− cosϕi)2(2 + cosϕi), ϕi is the equilibrium surface
wetting angle for the ith impurity particle (generally speaking, impurity particles are characterized by different
wetting angles; the angle ϕ = π corresponds to the case of homogeneous nucleation); ni is the number of molecules
on the surface of the ith impurity particle that can become nuclei (for homogeneous nucleation, it is usually assumed
that any molecule of the melt can become a nucleus); and Ncr is the number of impurity particles per unit volume
of the melt. It should be noted that the establishment of a steady-state nucleation process can be significantly
retarded because of a high magma viscosity (and, hence, a large delay), which, in addition, increases during gas
release.

From expression (11) it follows that an a priori description of heterogeneous nucleation is considerably
hampered because of a large number of random and poorly studied factors. In particular, formula (11) contains
parameters that are difficult to determine, such as surface tension on the melt–crystal interface σls (which varies
from 0.35 to 0.5 J/m2 depending on the magma composition), the surface wetting angle for an impurity particle ϕ,
etc. It should be noted that with decrease in the wetting angle, the work of formation of a critical nucleus on the
surface decreases rapidly, as well as the delay time. In practice, this leads to the formation of crystallization nuclei
predominantly on active impurity particles. In the case of almost complete wetting (ϕ→ 0), crystallization on the
surface should begin under practically zero supercooling. In the present paper, we restrict ourselves to the case of
heterogeneous nucleation on well-wettable impurity particles. In this case, the nucleation of the crystalline phase
can be considered instantaneous. The time dependence of the fraction of the crystallized volume is defined by the
expression [12]
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X(t) = Ncr
4π
3

( t∫
0

vcr(τ) dτ
)3

, (12)

where vcr = Ṙcr is the crystal growth rate, Rcr is the radius of the crystal, and Ncr is the number of supercritical
crystalline nuclei formed on active impurity particles at the initial time.

The crystal growth rate is defined according to [13, 14]:

vcr = dm
kBTf

h
exp

(
− Eη
kBTf

)[
1− exp

(
− ρmL∆Tf

NkBTfTmelt

)]
. (13)

Here ∆Tf = Tmelt−Tf is the supercooling at the crystallization front, Tf is the melt temperature at the crystallization
front, which, generally speaking, differs from the melt temperature away from the front because the latent heat of
phase transition releases during crystal growth.

For small supercoolings, expression (13) can be written as

vcr = K ∆Tf , (14)

where K = dmρmL exp (−Eη/(kBTf))/(NhTmelt) is a kinetic coefficient that characterizes the frequency of addition
of molecules from the melt to the crystal. The quantity vcr, defined by expression (14), is the first term of series (13)
for small ∆Tf . The mechanism of crystal growth governed by the law (14) is called the normal mechanism.

The question as to how the temperature at the crystallization front Tf varies with time remains open.
Following [15], we consider the following problem. Let a spherical crystal grow in the melt at temperature

T∞ < Tmelt. The temperature field around the crystal can be approximately described by the steady-state heat-
conduction equation

d2T

dr2
+

2
r

dT

dr
= 0. (15)

Since T → T∞ as r →∞, the solution of Eq. (15) is written as

T (r) = T∞ − (T∞ − Tf)Rcr/r. (16)

The boundary conditions on the crystal surface include the heat-balance equation

ρmLvcr = −λm
∂T

∂r

∣∣∣
r=Rcr

(17)

and Eq. (14), describing the kinetics of the phase transition.
Substituting Eq. (16) into (17) and eliminating the unknown function Tf from the system obtained, we have

the equation

(ρmL/λm)Rcrvcr + (1/K)vcr = ∆T. (18)

We note that the right side of Eq. (18) represents the supercooling of the melt away from the crystallization front.
In the case ∆T = const, Eq. (18) can be integrated:

vcr = K∆T (1 + (2ρmLK
2/λ)∆Tt)−1/2,

Tf = Tmelt −∆T (1 + (2ρmLK
2/λ)∆Tt)−1/2.

(19)

From Eq. (19) it follows that for t� λm/(2ρmLK
2∆T ), the crystallization is an isothermal process (Tf = T∞) and

the crystal growth rate is defined by the phase-transition kinetics: vcr = K ∆T . At large times, heat is accumulated
near the surface of the growing nucleus, and eventually, the crystal surface temperature becomes equal to the melting
point (Tf = Tmelt). In this case, heat release becomes the predominant factor in the crystallization process. Because
the magma viscosity is high (and, as a consequence, the kinetic coefficient K is small), the time of attainment a
regime in which the crystallization process is determined by heat release is much larger than the characteristic time
of magma degassing. Therefore, the process of crystal growth in the magma is considered isothermal (Tf = T∞).

Equation (9) combined with expressions (10) and (12) completely defines the dynamics of magma crystal-
lization, i.e., the time dependence of the volume fraction of the crystalline mass.

We calculated the process of solidification of a highly gas-saturated magma after instantaneous decompres-
sion. The thermal and kinetic parameters of the magma used in the calculations are given above. The initial mass
concentration of water dissolved in the magma was set equal to 0.055, and the number of bubbles per unit volume
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Fig. 3. Magma temperature versus time taking into account (1) and ignoring (2)
crystallization for Ncr = 1013 m−3 (the dashed curve is the effective melting point of
the magma).
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Fig. 4. Volume fraction of the crystalline mass versus time for Ncr = 1011 (1), 1013 (2), 1015 m−3 (3).

is 4 · 1013, which corresponds to the number of bubbles in volcanic glass and pumice. The number of supercritical
crystalline nuclei, which depends primarily on the structure of the magma (number of active impurity particles),
was varied from 0 to 1015 m−3.

Figure 3 shows the magma temperature during its degassing versus time taking into account and ignoring
crystallization. It is obvious that the heat release due to an increase in the crystalline mass leads to a significant
change in the cooling dynamics. The dashed curve shows the effective melting point of the magma. It is evident
that its increase is caused mainly by a decrease in the concentration of gases dissolved in magma due to magma
degassing.

Figure 4 shows the volume fraction of the crystalline mass versus time. It is evident that it increases
considerably at the initial stage of the process. However, the growth rate gradually decreases and, eventually,
becomes nearly equal to zero. This is due to the fact that during degassing and cooling, the magma viscosity
strongly increases (from 103 to 1012 Pa · sec) and, accordingly, the value of the kinetic coefficient K, determining
the crystal growth rate, considerably decreases. Even at t ≈ 6 sec, the structure of the magma resembles a gelatinous
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4 µm

Fig. 5. Structure of pumice.

fluid with crystal grains “frozen” in it; the volume fraction of the crystal grains reaches 40% depending on the number
of supercritical nuclei in the volume of the melt at the initial time. As a result, when almost the entire mass of the
gas is released from the magma, the magma viscosity approaches 1012 Pa · sec; i.e., uncrystallized magma enters a
glasslike state. If the active crystallization nuclei are small in number, the magma becomes completely amorphous.

The volume fraction of bubbles at the end of the gas-release process can also be found. From calculations
performed for the problem parameters considered, it is 60%. The average diameter of a bubble is approximately
equal to 30 µm.

The simulated structure of solidified magma corresponds both qualitatively and quantitatively to the struc-
ture of real pumice (Fig. 5).

Conclusions. The problem of magma solidification during an explosive volcanic eruption was considered.
The thermal effects accompanying the growth of a single bubble are analyzed. A self-similar solution of the thermal
problem is found for the asymptotic growth law. It is shown that supercooling is established at the front of
the bubble and remains constant during the entire process, but, for the characteristic parameters of the problem
considered, it is insufficient for melt crystallization. Therefore, the problem of magma solidification during growth
of an ensemble of gas bubbles is considered. The volume fraction of the crystalline mass is shown to considerably
increase at the initial stage of gas release. In the process of magma degassing, its viscosity strongly increases and
the crystal growth rate considerably decreases and eventually becomes nearly equal to zero; as a result, the growth
of the crystalline mass ceases. After release of the almost entire mass of the gas, the solidified magma is shown by
analysis to be glass containing crystal grains with a volume fraction of 40% and “frozen” bubbles about 30 µm in
diameter with a volume fraction of 60%.
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